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The exact solution of the problem given in the title is constructed by the methods 
of integral transforms and analytic functions. This problem has arisen in connec- 

tion with the theory of the linearly-deformable foundations, characterized by a 
power kernel. The papers [l - S] are devoted to integral equations of the first 
kind. In them, one assumes that such a kernel corresponds to the elastic half- 

spece whose modulus of elasticity is a power function of the depth. For the de- 
termination of the exact form of the kernel one has to solve Flamant’s problem 

(in the plane elasticity theory) and Boussinesq’s problem (in the three-dimensio- 
nal theory). The solution of Flamant’s problem is given in p, 21 and a partial 

solution of the Boussinesq problem is given in [ll] (only the displacements on 
the boundary of the half-space are calculated). An attempt for the computation 
of the elastic field in the half-space can be found in a paper where the initial 

terms of the series, representing the solution in spherical coordinates, are com- 

puted but there is no general formula for them and the convergence is not esta- 

blished. (*) 
In this paper we will use cylindrical coordinates; the solution is expressed in 

closed form in terms of known higher transcendental functions. The formulas of 

the solution are obtained applying A. Ia. Aleksandrov’s [8] process of transform- 
ing plane problems of the theory of elasticity into axially symmetric ones and 

conversely, and also by applying integral transforms whose kernels are Whittaker 

functions. 

1. We consider an elastic nonhomogeneous half-space, bounded by the planes = 0, 
whose modulus of elasticity is a power function of the depth, i.e. p = Kzk, where K 
is a constant, while Poisson’s ratio v is constant. A concentrated force P acts along 

the z -axis on the boundary z = 0 of the half-space. In order to solve the formulated 

problem we apply the following formulas [8]: 
x 

p(x) =L-c~ p*trJrdr 
o v/,z (l-1) 

*) Belik, G, I., Some three-dimensional problems of the calculation of constructions 
on generalized elastic foundations. Author’s essay of candidate dissertation. Dneprope- 
trovsk, 1963. 
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3, = v (3, -t a,) 

Here and in the following, p (x), crX, oy, G,, xX., u,, uy are, respectively, the load 
the stresses and the displacements of the plane state while the asterisk denotes the quan- 
tities of the axially symmetric state. For a given load of the axially symmetric state 

(the concentrated normal force Y) we determine by formula (1.1) the load correspon- 
ding to the plane problem. One finds easily that 

p (z) -= - (2ny-‘Ps-2 (1.3) 
As for the stress and displacement components of the plane state, corresponding to the 
distributed load p (x), they can be found with the aid of the solution of Flamant’s prob- 
lem for a nonhomogeneous plate, whose modulus of elasticity is p = Kzk, where 

O,(IC<l. 
The solution of Flamant’s problem in polar coordinates is taken from [ll] 

(1.4) 

(1.5) 

q z 1(1 -j- X) (1 - L)+y ) 
l-v 

;I c-- y-;JC 

Consequently, in the case of a distributed load $$x) the stresses and the displacements 

are expressed by the integrals 

5,== 7 ~(~)~~(~,~,~)~, 11, = 3 p (E) K, (.c, 5,5) d: u 
-4, -0D 

CT, = 7 P (E) fi, (G? E)G u, = 7 p (E) K, (.r. z, 5) fg 

-.a -x 

(1 .!ii 
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Let p* @) be a locally integrable finite function, 
Then 5 

P* (5) = j_ p(z) d.r = 0 (j-l) for E -, a- (1.7) 

By virtue of this, we obtain for the stresses and the displacements of the plane problem 

z xz = - T El p. ( 

*I 

aflae;, ,-* q (g 

(I.81 

we represent Ri (2, 2) (i =: I, T3 , and Kj (x, Z) (j = IJ) by the Fourier integra!, 

Ri (5, z) = 5 Ri, (z, s) eissds, Kj (x, Z) 7: 7 Ki, (c, ,y) Pisxd,y (1 .II) 
--QI -00 

Substituting (I, 9) into the equalities (I. 8) interchanging the order of integration (this 

is legitimate by virtue of the condition (1. 7)), we obtain the stress components as ex- 

pressed by integrals of the form 
m a3 

.I id&, (2, S) eisx ds .I’ P* (&+“~d~ (i==1,2,3) (1.10) 
-m -m 

and the displacement components by the integrals 

Since 

\‘ iSKj,. (2, s) eisrds 7 P (EJ &“Ed’j (i = 1,2) (1.11) 
-00 -m 

the inner integral in (1.10) and (1.11) is equal to - i(%)-“P Sgn.~. 

Then, the solution of the plane problem is 
-0 M 

The obtained results allow us to compute, with the aid of A. Ia. Aleksandrov’s trans- 
form (1.2) the stresses and the displacements in the axially symmetric case. ~ience 

s,* =I p[.,,,ctj (r, L), 5, /: I’ ’ I , <,I ’ 
I 

p,zt’t’: I!‘. -.,1 
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a* -_ YP 
[ 
&)(f) (r, 2) + I# (T, z) + -y-- WO) (f, 2) - + 

2,,* = PiI# (i, z) (1.13) 

Here we have introduced the following notation: 

Ix*@)(‘, 2) =JR., (2, s)Jn @)& i,,(l) (r, 2) = T SR,, (2, s)Jn (ts) ds (1.14) 
c 

0 0 
a0 

u* = Pi 
s 

SK,, (2, s)J, (rs) as, w* = P 1 s&* (2, s)Jo (rs) ds (1.15) 
0 0 

Inverting (1.9) and inserting the result in (1.13) and (1.15), we obtain the expressions 
for the stresses and the displacements, Beforehand, in order to avoid a cumbersome 
expression, we introduce the specially designed notation 

i 
r$) = r [‘/a(/# * q + t)] ’ 

r$) = 1 
-- r [‘I~ @ f P + 311 

(1.16) 

&i c*i (2, r) = 1 ++ fk+@W* p/* q+X), - p/* p+w) (224 J* (rs) ds 
0 

Here, the signs in the right and left-hand sides correspond to each other. With this not- 
ation, the expressions have the form 

for the stresses 
oz* z.z - CPz’/* M+1) 2-‘/o (k+a [7+w;tb~~ (r, 2) + y_@)B&o (r, z)] (1.17) 

rrz* = CPz’f* (k4)2-‘f~ (k+@ { Illa (1 -j- k + q) 7+(s) B;oll (z, r) + 

+Y*(t ~k-g)7-(~)~~(2, q1 - 2 f 7~(~)~~~~ (2, r) + 7-(~~~~~ (2, r) 1 - 

- [Y, (ka-~P+3)+1/r4+klr,(s~B:, -I, &, r) - I’fr W- CP + 3) - f/g + kl x 

x 7-(8Will (2, r)l 
for the displacements 

(1.18) 

w* (I., 2) = (i-r)CP 
#(k+sI $‘k (1 + k) ,%#+1) @zr(j f- k - 4) r!l”B”looo @, 2) i- 

+ 0 + k- -I- cz) 7lf’B”m fr, z)] + Va (k f q - f)P +?&m (r, z) - 

- Va (k-cq-tt)Q ~~)Kxooo (r, z) - f’lr @?--P-Q + “/zq] ~7%3&,oo(r, z) + 

+ [“I, W - P - 1) - “I& d?B_;o&, z>j (1.19) 

u+ (r, Z) = - (i - v, cp 
2’/~k+5)Kk~l/,(~fl) (% (k + Q - 1) 7%&m (r, q + 

+ v&--q - 1) 7%:~~~ (I, 2) - 2 (k -I- f f-’ I(k - p + 1) 7$%3:,. (r, 2) + 

+ (k -I- q + 1) 7~%00,1 - IVlr (k2 - qa - 1) + vaql 7$.%1:~,,,, (r, z) - 

- Fir (k* - qB - 1) - V2q] 7%:llol (I”, Z) (2.20) 

Expressing the Bessel functions J, (rs) and J, (rs) by the Whittaker functions Ms., 
(2irs) and Mo,l (Zirs) respectively, we arrive in the formulas (1.16) - (1.19) to integ- 
rals of products of Whittaker functions, which can be computed in the sense of the prin- 
cipal part [lOI. As a result we obtain 

o,* (r, 2) f - 2-@+5> CPz-‘(y!?q,,&., 4- 7F) X,,,, ,I (1.21) 
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Here and in the following we have the notation 

where r ( z,For the same domain of values of r and 2 the displacements are: 

1 + k)-’ r’-“z 3 3 , - [l/4 (k2 - qz - 1) + l/tq] yyz;,,, 2,, - -W+k+q)( _ [x, 

4 

(ka_$z I 

--I)- l/241 P~s+,2,2,7~ 
(1.24) 

However, if in the equalities (1.16) - (1.19) we express the Whittaker fUnCtiOn W?.,P 

(22s) in terms of the Whittaker functions Mh,-+lL (~z.s), and the Bessel functions ‘1, (rs) 

and J1 {ts) in terms of the ~i~aker fu~ct~ons~~,~ (_ir 2ir.S) and wO,, (k 2irs) respec- 

tively, then, making use of the same formula (7.625 (1) El CQl we obtain for the dom- 

ain z < r 
is,* z.xZ - 2-@+WPn-‘iz (ir (k + 2) #‘j’l”’ [S&k). 2, s/, - S&r), z, %1 -i- 

+ r (4 k - 2)73-1 [lie (- si - k - q) j I?+’ t-(k+D [e’~*(kc3)ni S&+a), (ki.4). (kt$'t) + 
+ l-rlsfkt8) ni 

ii';;+,, (k+4), (kt*Q ] i- iii' (k t 2) ?'s."'?.l"' 1s: (ttk), a, % - 'f&k), 2, %'la 1 + 

+ I'(--. k - ~2)~(3)I'-"(~/~(- 1 - k + q)] z”+?--(~**) X 

X [e”*‘kf3)SiS~k+s), (W, (k+%) -+ e-“r(k+3)“i &+s), (ktl), (W/d1 > 
(1.25) 

Here and in the following 
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x 8, (a,, a,, a3; Plc P2; - +) 
z,,* = 2- or+@ CPn-‘I, {l/s (1 + k + q) r (k + 2) r+@)r_@) (rz)-1 i [N&+k). 1. y, - 

- &,+k),~,~/,l + '/z (1 + k + f2) I'(-- k - 2)T+(*)r11% (- 1 -k -@I X 

X r(k+s)zk+l [ e-‘lx (k+l) & N&&), (&*p), (k+Q) + e”’ (‘+‘) xi N&+t), (k+r) (%+?/,)I + 

i- ‘/a (1 + k - q) I’ (k + 2)T+(s)T-(r)(~~)-’ i [N&k,, 2, a/r - N_-cI+;~. z, a//,1 + 

+ l/e (1 + k - q) y_(3) I’ (- k - 2) l?-l [ V2 (- 1 - k + q)] zk+Wk+3) x 
X [e-‘/e (k+Q “iNi;+3j (k+r) (k+‘,*) -/- C’h (k+l) xir CktS), (k+4). (k+‘/il- l/3 r (k + 2) x 

x r+(S)7 Wr-* i [N't -(l+k), 3,6/z.- &+k,, 3. 5/,1-1/2r(-~-2)r-1[1/2 (---l----k-@] x 

x y+(S)zk+2r<k+*) [deck**) T(i @+3) (k+3) (k+YI) + eYc(kt2)xiNfk+3) (k+3) (k+#/ )] - I I , . * 

- ‘/a I’@ + 2) T+(3k(3) i [N:;l+kj,s, y/, - N$+k).s, &//,I - ‘/2 I’(- k.- 2) X 
X l?-'[l/s(- i - k -!- q)] 7_(3)Zk+27-(k+4) [& ck+*) xi N;i+sj, (k+s), (k+S/*) + e’/Z (k+2) xi X 

x &+s), (k+S), (k+*/dl - [1/r(k2-q2+3)+1/2~+klr(k+2)r-111/2(5+ 

+ k: + q) 1 ‘f,.(*) b)-’ i [M:;3+k) 2 v/ - M:(3+k) 2 a/ 1 - [l/q (k2 - q2 + 3 + 
+ '/2q + k)]r(-k -2)&[l;,;j __k - ,&&kt'r-@+W j~'lzC"+l)=i X 

X M;++I,, (k+a). (kt'/3 + evr(k+l) XiMt+k),(k+4),(kt7~/2)l - [l/d (k" - q2 + 3) - 

- '/ZQ -l-k] r (k + 2) I'-' ['/2 (5 -I- k -t q] c(+c3) @2)-l i X [ML:kts],2,*[z- 

- ~(kt31.2, v,] - [l/r (A2 - q2+ 3) -vzq + k] r (- k - 2) r-ql/, (I - 
- k + q) J ~_Wzk+lr-N+3) [ e-‘h @+I) ni fkf;;+kj, (k+q), ck+71rj + e’h @+I) xi x 

x M:k+1,, (k+4), (k+'/zd (1.26) 

N&= 5 b,, 3F2 (l/2(+9. + x), n + A, n +(A-- 2); % n + pi%) 

n=3 

&:A,~ = i C,,2F$/2&7 +x), n-I- A, 1~ + (h-2); x, n. + CL; -c) 

n=o 

Mh,p= ji 4d2( V2 (t q + x), n + A, n + (A - 2); x + 2, n + I-L; -+) 
n=il 

&:A. p = C,~~2(~/2 tt!Z + 4, n + A, n-t (h- 2); x + 2, n + p; +) 
la==0 

The displacements in the domain z < r ate 

w* (r, 2) = (1 - Y) CP [2k+%k (1 -j- I-c) 1/3t]+ (V2 (1 _t k - q)I’ (k)r+%(l) x 
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x tv~-~i If&i>, a, ye + $i-x,, a, ~1 -t (1 + k - q) 1‘ (- k) r+(l) x 
x r-wa (1 - k - q) J zr-% is’+ Wtk), (?i+Zh @+%I -t ‘$Itk), (kt2k (W/d + ‘ia (1 -t 

+ k + q) r (Ii) 7+(l)7_(l)zl-kr-2~ I&;-k), a, y. + &-a), a. y*l + (1 + k + 9) r-cf” x 
x I‘ (- k) r-1 [l/a (1 - k + q)] zf+i [$l;k).(k+2).(kt‘/r) -t So+k).(k+a), (k+'/d + 

+ '/a@ + q - 1) q r (k)~+(l)~_(l)z-k~-l [s&k), 1, '1. - S;:-k), 1, */s) + 

+ l/2@ + g - i)q r(- /c) y+(l)l%-1 [l/2(1 -k - q)]r--(lik) Ie-k*‘si X 

x ‘$+I& (ktl), fk+YI)+ e*" kXi$i+~). (ktl),(k+3/,)j - '12 (k - q - I)ar (gr_w+@,x 

x z-kr-1 ~~;1_k),l,*/~-- S;;ek),l,~/~ - l/2 (k - q - 1) q r f- J4 T-(~Q.'-~ 1% (1 - 

- k + q>] f^-(l+k)~f+'* kxi &l),(k+l). (ktyr) + e'iz kxiqi+l)* (PC+11 (W131 - 

- ['lr (k2 - 9% - 1) + “& q] qr (k) T+f1?‘_f3)Z-le~-1 [ =&.k), 1, e/l - &+k), 1, "/A 1 - 

- fl/* (k’ - qa - 1) + 11~ q] qr (- k) pT-l fllz (3 - k - q) 1 dk*ll x 

x [e-“’ lrni L$-l),(k+;), (kP/~f + & kni L&l), (k+l), (k+*/,l -+ 

+ P/dk2 - q2 - 1) - I/2 41 4r (k) T_(~)?‘+(~)Z-~ [&k+l), 1, ;% - &l), 1, %I + 

+ 15’4 (ka - q2 - 1) - I,,$ q] 43: (- k) ~_cW-l [“/, f3 - k -f- (I) r-@*l) fe-” krri x 

x ~$4 (k+l , (kt%) + 8" kniL;k-l), (k+lh(k+%d) (1.27) 

L$,,p= jj b, $2 (‘iz (-& q + x), n -t_ h, FZ -t h; x -t- 2; 72 -t tt; +) 
n=O 

L&p= 5 c, $2 (‘it2 (Itr 4 i- x, n + h, n + h; x -C_ 2, n + p; - c 1 
Tl=O 

a* (r, 2) = -(1 - v)CP (z&t’+9 Kkli_ii)-’ (“is (k --t_ q - 1) l? (k) ~t~~$‘_(l)z-“r-fi X 

X [$L,, 2, */p - N&-,),$,1/,] + '12 (k + q - 1) r (- k)Y+(').~-flli~ (1 -k--cdl x 

x yfk+l) [e'lz (1-k) xi @+1), (k-12),( k+s 
I 
*) + e-'/*(1-k) =i N [ktl), (k+z), (k+“l:)l + 

+ % (k - 4 - 1) I‘ (k) ~_(lJ~+%-ki--l i {fv;,,, 2, J/? - N,-b,, 2, y.] + 

i_l/z(k_q--_)~(-~)~_(~)~-~[“/z(~-~++)]~-(ir’~~)[e’~~f~-kfrt~ >< 

x $;+I), (k+z), (k+s/& + e-“’ Wkt xi &ktl), (ktz), (kt:'/~) 1 - ‘fz (1 + k - 4) ti + Ic)-’ x 

x I’ (k) ~~(*)~_(l)~l-~~-2 [iv ;: _ k), 3, s/J -‘i- &i-k). 3, sjtl - li2 (4 -+- k - 4) c1 + k)-'x 

x r (- k) y+V)r-l [‘jz (1 - k - q)] w-@+~) le-*iL kxiN&k), (k+3), (k: .y:? t- 

+ e”” kni Nik+l), (k+s), (kP/dl - 
“/, (1 +. h_ + q) (1 ../- ,$$-I r (k) ~_f~)~+(~~.+Q--2 x 

x &,k,, 3.55 + N&k), 3, a/,1 - l/2 (3 -i- /% -t- (,) t1 i- k>-l i‘ (- &) r-'l' x 

X r-1i1,'2 (1 - k-j--q)] Z T-(‘*2) [f?+ h-ni i!$+k), (k+3), (k+!,,J +Z” k”iN&l), @e-3), (k+yI)]-- 

- [l/& (k2 - q2 - 1) -j- l/t q] r (k) y+(l) i_(“)z-ir-li x 

x I E&L 2, */p - E” ~c+l~,2,~ip] - [ 1/4 (k2 - q2 - 1) --i’,‘,qj I’ (- k) Y~~“P~~/~(~-- 

- k - q)] r-@+l) [e’~~@-Q+ E;+k-lt,(k~?),fg+sl,)-: e-11z’1-R’7’ E~-1,, fh’.izf, (~,3j,) f - 

- [II4 (x;2 - q” - 1) - liaq] I’(k) f’)y$?z-“i [E:-(h.+lj,z,9/1 - b’7(k.+,~.~,.~,!,]---11~~ (k2-- 

- 4% - I) - 1j2q] Q-k) $:)I‘-’ [‘,Jz (3 - k f q}j ri‘-I [~‘/-(l-~)-~f E;i;_tf,f~~+2),(s~*~l,-t- 

+. e-‘~rfl-QXi E&l), (&&(kp,*)]) ( 1.28 ) 
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Ei& = 51 4,8+2 (‘i? kt Q + x), n + A, n + (A - 2); x f- 2, n + p; +) 
Tl=O 
m 

E&.t = IX G SF2 (l/2 (k 4 -t- x), n + A, n + (A - 2); x + 2, n + p; - +) 
rr=o 

Because of their awkwardness, we do not give the formulas for (T,*and aa*.The deri- 

vation of these formulas from the equalities (1.12). (1.13) is similar to the one given 

above. 
Thus, the solution of the formulated problem can be represented in the entire half- 

space in integral form by the formulas (1.16) - (1.19), which are expressed by analytic 
functions in the form of series of generalized hypergeometric functions (1.12) - (1.24) 
for the domain F < 2, and (1.25) - (1.28) for the domain r > z.The functions, repre- 

senting the solution in different domains, are not the analytic continuations of each 
other. 

2. From the integral form of the solution one can obtain an asymptotic expansion for 
the obtained solution. Thus, making use of the asymptotic expansion of the Whittaker 
function, we obtain an asymptotic expansion for uZ* for large x and a fixed r 

c,* - - CPZ’ C 3+k+q F 5+k+q 7+k+q 
2’1s (7+k-Q) ( 4 ’ 4 ; t-G)+ 

+ 
3+k-_q 
2% (7--k+Q) F 

5+k-q 7+k-q 
4 ) 4 ; 1; -q (2.1) 

For small values of a 2nd fixed r we have the following asymptot;lc expansion: 

OL+ - - CP 
2-(k+s) p (k + 2) r 

+ 
l’(-k--_)I’(k+4) 

$3)#3) 
+ - (9 + +)‘I% ry’I’ [l/2 (- 1 - k - q)] + 

r(-k-2)P(k+4) 

+ p r [l/1 (- 1 - k + q)] I 

Zk+2 + 

2 (za + r*p (k+4) 
-; i;----- 2a + 9 (2.2) 

From the last relation it follows that a,* -t 0 as I - 0 and r # 0. The fact-that the ob- 
tained solution satisfies the boundary conditions (1.28), can be easily seen also from 

the exact representation of the solution by the formulas (1. -23) (1.24). since 
m 

i ( b,aFa al, aa, aa; PI, pa; 
z 

ir ior z-0 
?l=UO 

tend to the same limit and the generalized hypergeometric functions which occur in the 
sums have identical parameters. This limit is equal to 

r (CZa) r (as) 

r (b) 
aF1 (aa, as; Ps; l/z) 

From (1.27) we have for r = I’ that uZ* N AzWa,where .4 is some constant The same 
behavior can be obtained for uZ* on the z-axis from the exact representation of the 
solution by formula (1. SO), namely 3P 

ot* Ir* = - -2T .lfs-s 
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Here 
N_ @+3)@+2) 

6 E (~+~-~~(3+k-~) F(2tk f4; -we; $+ ) 
1 

+ (S+k+q)(3+k+q) F 
7+k+q 1 

2 ;y 11 
We give the values of the constant M, computed for some values of v and k 

V k M 

vs 1.063m9 
‘Is :; 

~*~~~ 

::;;;;;; 
1.215831 
1.308136 

% 1.030632 
‘Jr ‘la i: 118034 1.349478 

7/s i .I53698 1.452385 

On the boundary plane I = 0 the displacements are obtained in the form 

lu+ fr, 0) = 
(1- v) CPq sin ~l/~q) I’ (l/a + Yak) 

4K (1 + k) rl+lF v/r; I’ (I+ ‘fzk) 

u* (r, 0) = 
v - v) CP cos (‘/sag) I’ (1 -t_ ‘/ak) 

2Kkr’+k 7/?i r (l/t + ‘lak) 
(2.3) 

The first of the formulas (2.3) has been obtained earlier [ 11 J. For k = 0 from (1.20) 
we obtain 

bz* (t, 2) ‘I&& anaFn(‘i,,“+2,n+4;1,n+3;__)+ 
n=o 

00 1 
+ 2 a,sFa (I/a, n + 2, n + 4; 1, n + 4; - G)j . 

n-0 

Hence, for r = 0 we obtain the already known result [ 22 J 

Qz* (0, 2) = - 3P (2nzs)-l 

The already known results [la] can be obtained also from the formula (2.1) for k = 0. 

BIBLIOGRAPHY 

1. Korenev, B. G., Some problems in the computation of beams and plates lying 

on an elastic foundation, Sb. tr. Mask. inzh, -strait. Inst. Np14. 1956. 

2. Lekhnitskii, S, G, , Radial distribution of stresses in a wedge and in a haif- 

plane with variable modulus of elasticity. PMM, Vol.26, N’l, 1962. 

3. Mossakovskii, V. I,, Pressure of a circular punch on an elastic half-space 

whose modulus of elasticity is an exponentiai function of depth. PMM, Vol. 22, 

Npl, 1958. 

4. Popov, G. Ia., On a method of solution of the axisymmetric contact problems 
of the theory of elasticity. PMM Vol. 25, NQl, 1961. Some properties of classical 
polynomials and their application to contact problems. PMM Vol. 27. H5,1963. 

5. Popov, G. Ia. and Rostovtsev, N. A., Contact (mixed) problems of the 

theory of elasticity. Proceedings of the Second All-Union Congress on Theoret- 

ical and Applied Mechanic, Ne3, Moscow, “Nat&a”, 1963. 

6. Rostovtsev, N. A., An integral equation encountered in the problem of a rigid 
foundation bearing on a nonhomogeneous so& PMM, Vol. 25, N’l, 1961. 

7. Galin, L, A., Contact problems of the theory of elasticity for a body with vari- 
able modulus of elasticity. All-Union Conference on the Application of the 



The solution of the Emmsinesq problem for a half-space 1009 

Methods of the Theory of Functions of a Complex Variable to the Problems of 
Mathematical Physics. Abstracts of reports. Tbilisi, 1961. 

8. Aleksandrov, A. la., Solution of axisymmetric problems of the theory of ela- 
sticity with the aid of relations between axisymmetric and plane states. PMM, 

VoI.25, w5, 1961. 
9. Rakov, A. K. and Rvachev, V. I,. , The contact problem of the theory of 

elasticity for a half-space whose modulus of elasticity is a power function of the 

depth. Dopodivi Akad, Nauk Ukrain. SSR, Np3, 1961. 
10, Gradshtein, I. S, and Ryzhik, I. M., Tables of Integrals, Sums, Series 

and Products. Fourth edition. Moscow, Fizmatgiz, 1963. 

11. Rostovtsev, N. A., On the theory of elasticity of a nonhomogeneous medium. 

PMM VoI.28, Np4, 1964. 
12, Timoshenko, S. P., Theory of Elasticity. Leningrad, Gostekhizdat, 1934. 

13. Whittaker, E, T, and Watson, G. N. , A course of modern analysis, 

Fourth Edition. Cambridge University Press, 1927. 

Translated by E.D. 

PMM VoI.35, Np6, 1971, pp.1062-1069 

A. A. KHRAPKOV 

(Leningrad) 
(Received February 17, 1971) 

The solution is given of a number of problems on the elastic equilibrium of an 
infinite wedge with a nonsymmetric notch at the apex by using the method elu- 

cidated in Cl]. The solution is obtained in the form of the Cauchy-type integrals 
for various homogeneous conditions on the side faces of the wedge. 

The problem of representing 2 x 2 matrices given on a curve L in the complex 
plane and belonging to a certain class is posed and solved in closed form in 

b. 33 in the form of the product of 2 x 2 matrices holomorphic to the left and 
right of .L ,whose boundary conditions on L commutate. 

A simpler solution of the mentioned homogeneous Hilbert problem, more con- 
venient for app~cations, is given in [l+J. It is also shown here that the problem 
of elastic equilibrium of an infinite wedge with nonsymmetric notch at the apex 

and stress-free faces reduces to an inhomogeneous Hilbert problem for a two- 

dimensional piecewise-holomorphic vector, where the matrix factor belongs to 
the above-mentioned class in three cases. 

1. Raduction of the problem of elrttlc equilibrium of A wedge 
with a notch to 4x1 in~omogenaous Htlbert problem, ~tanin~nite 
triangular wedge occupy the domain 0 < cp < 8 in a plane with the polar coordinates 

r-, g, . Values of the stresses oo, T,.~ are given on the face 9 = 0, but on the face 

cp =ZZ 6 we consider homogeneous conditions of one of the following kinds : 


